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We calculate the spatial entanglement between two electrons trapped in a nanostructure for a broad class of
confinement potentials, including single and double quantum dots, and core-shell quantum dot structures. By
using a parametrized confinement potential, we are able to switch from one structure to the others with
continuity and to analyze how the entanglement is influenced by the changes in the confinement geometry. We
calculate the many-body wave function by “exact” diagonalization of the time-independent Schrödinger equa-
tion. We discuss the relationship between the entanglement and specific cuts of the wave function, and show
that the wave function at a single highly symmetric point could be a good indicator for the entanglement
content of the system. We analyze the counterintuitive relationship between spatial entanglement and Coulomb
interaction, which connects maxima �minima� of the first to minima �maxima� of the latter. We introduce a
potential quantum phase transition which relates quantum states characterized by different spatial topology.
Finally we show that by varying shape, range, and strength of the confinement potential, it is possible to induce
strong and rapid variations in the entanglement between the two electrons. This property may be used to tailor
nanostructures according to the level of entanglement required by a specific application.
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I. INTRODUCTION

Entanglement is a quantum property which provides the
possibility for quantum information/computation to over-
come some of the limitations of traditional devices. For this
reason entanglement is now considered a physical resource.
Recently, semiconductor quantum dots �QDs� have been pro-
posed as promising hardware to perform quantum
information/computation within solid state.1,2 Their potential
advantages include the existence of an industrial base for
semiconductor processing and flexibility in driving the com-
putational degrees of freedom by applied electromagnetic
fields and purposely designed trains of laser pulses.3 The
system parameters may be tuned, making it possible to tailor
the properties of semiconductor nanostructures.2,4 The rapid
technological advances seem to promise sophisticated engi-
neering of QD-based structures, with the potential for the
production of scalable and coupled QD systems.5,6 A crucial
requirement is then the possibility of generating and manipu-
lating entanglement within these structures.

In QD systems entanglement could be controlled by ex-
ternally applied electromagnetic fields7 or by varying nano-
structure parameters. Recently the effect of the interdot dis-
tance on the entanglement of two electrons trapped in
�In,Ga�As/GaAs QD molecules has been studied,8 as well as
the effect of ionization on the entanglement of two electrons
in a single QD.9

In the present paper, we investigate how the geometrical
changes in the confinement potential of single, core-shell,
and double QD structures influence the spatial
entanglement10 between two electrons trapped within the
nanostructure. To this aim we will use the two-center power-
exponential potential11 which allows to change the confine-
ment potential with continuity from one structure to the oth-
ers.

We will show that small variations in the confinement
potential can induce large changes in the entanglement and

present a potential quantum phase transition between states
with minimum and maximum entanglement. We will per-
form a detailed study of the role of the Coulomb interaction
in determining the entanglement and discuss the features of
the many-body wave function which characterize the various
entanglement regimes.

The paper is organized as follows: the theoretical model is
presented in Sec. II; in Sec. III we present and analyze the
results for the system ground-state energy and related Cou-
lomb interaction; Sec. IV includes the discussion of the en-
tanglement; in Sec. V we analyze the characteristics of the
many-body wave function; in Sec. VI we present entangle-
ment indicators; and in Sec. VII we discuss a potential quan-
tum phase transition. Finally Sec. VII is devoted to conclu-
sions and summary.

II. THEORETICAL MODEL

We consider two interacting electrons confined within a
nanostructure and solve the related one-dimensional prob-
lem: we expect the characteristics displayed by the entangle-
ment within the single-dot and core-shell single-dot systems
to remain valid �at least qualitatively� for the corresponding
spherically symmetric dots. The entanglement related to a
two wells one-dimensional potential corresponds instead to
the one generated within two separate spherically symmetric
quantum dots. This system in fact respects the topology of
our one-dimensional model. As we will see, the analysis of
the relationship between the many-body wave-function char-
acteristics and the features of the entanglement supports this
choice.

The Hamiltonian describing our system is

H = �
i=1

2 �−
1

2

d2

dxi
2 + V�xi�� + U�x1,x2� , �1�

where we have used �effective� atomic units and U�x1 ,x2�
=��x1−x2� models the Coulomb repulsion between two elec-
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trons in one dimension.12 The nanostructure is modeled using
the two-center power-exponential potential11 V�x� given by

V�x� = − V0�exp�− ��x + d�/R�p	 + exp�− ��x − d�/R�p	
 �2�

with the two centers symmetric in respect to the origin and
situated at �d. This allows us to study a broad class of
confinement potentials with different shape, size, softness,
and smoothness of the nanostructure boundaries.

By varying its parameters, this potential can describe
single and double quantum dot structures—to model, for ex-
ample, gate-defined or self-assembled QDs—as well as core-
shell quantum dots �such as the ones synthesized using col-
loidal assembling techniques13� or self-assembled QDs with
compositional modulation �see Table I�.

Figure 1 highlights how the potential varies with the value
of the parameters and how its flexibility allows to consider
“soft” or “hard” potentials as well as core shells with differ-
ent proportions between the two material components �com-
pare, for example, center and bottom panel for p=200�.

For fixed potential-well depth V0 and potential range R,
the parameter p in Eq. �2� characterizes the softness �hard-
ness� of the confinement potential. If p=1 the potential is
triangularlike; for 2� p�10 the confinement evolves from a
soft Gaussian-type potential toward wells with a flat bottom
and steep sides �hard potential�. By increasing p even further
�p�200� we obtain a potential practically indistinguishable
from rectangularlike wells.

Each panel in Fig. 1 corresponds to a different potential
range R, whose value determines the transition between dif-
ferent geometries. For each R we plot the potential for three
different values of p �p=2, p=7, and p=200�.

In the case of soft confinement potential �p=2�, with in-
creasing R the resulting two-center potential changes
smoothly from two separated wells to a single potential well.
The smoothness of this potential can simulate, for example,
the controlled, incremental doping of a semiconductor struc-
ture. For p=7 we obtain a steeper confinement potential, but,
more importantly, we obtain a “core-shell” structure for in-
termediate values of R. Notice that the fact that the potential
is still relatively smooth can simulate the experimental situ-
ation in which there is a strong intermixing between the core
and shell materials at their interface. For p=200 the confine-
ment potential is rectangularlike and the structure intermedi-
ate between double and single wells may correspond to col-

loidal core-shell QD nanostructures. In this case, we deal
with a compound QD nanostructure, which consists of the
small inner QD embedded in a larger outer shell with no
relevant intermixing between the different materials.13

To analyze the influence of the geometry and softness of
the confinement potential on the entanglement between two
electrons trapped within the nanostructure, we solve the
Schrödinger equation

H�i�x1,x2� = Ei�i�x1,x2� �3�

numerically by “exact” diagonalization. To this purpose, we
express the wave function as a linear combination of single-
particle basis functions

�i�x1,x2� = �
j1

�
j2

aj1,j2;inj1
�x1;��nj2

�x2;�� , �4�

where �nji
�x ;��
 are the eigenfunctions of the one-

dimensional harmonic oscillator with angular frequency �.
To solve Eq. �3� we truncate the expansion in Eq. �4� by
considering only terms with 1� jl�N, l=1,2, where N is

TABLE I. Table showing the main R and p parameter ranges
corresponding to different types of nanostructures and potentials.

Dot type R and p range Potential �harder for larger p�

Single dota 12�R; p�2 Single well

20�R; p�4

Core shellb 9�R�16; p�2 Well within a well

16�R�30; p�7

Double dotc R�7; p	1 Double well

aReferences 14–16.
bReferences 13 and 17.
cReferences 5, 18, and 19.
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FIG. 1. Confinement potential profile V�x� as a function of x and
for different values of R. Solid lines correspond to the soft confine-
ment potential characterized by p=2, dashed lines correspond to a
rectangularlike confinement potential �p=200�, and dotted lines
correspond to an intermediate confinement potential �p=7�. Other
parameters are V0=10 hartree and d=8a.
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the single-particle basis size to be used in the calculation.
We have performed our calculations for fixed V0=10 �ef-

fective� hartree and d=8a, where a is the �effective� Bohr
radius. We are interested in the system ground state and we
find that, using 
�=0.25 �effective� hartree, a single-particle
basis size of N=50 is large enough to achieve convergence.20

For simplicity in the following we will refer to the system
ground state and to its eigenvalue as ��x1 ,x2� and E, respec-
tively.

III. GROUND-STATE ENERGY AND
COULOMB REPULSION

To understand the entanglement properties of these sys-
tems, it will be helpful to consider first the behavior of the
ground-state energy E and of its Coulomb repulsion compo-
nent �U. Figures 2�a� and 2�b� show the results for E and
�U, respectively, as a function of the confinement potential
range R and different values of p. For p=2 �soft confinement
potential� and large R the structure is a single well of depth

2V0 exp�−d2 /R2�. The two electrons are localized at the bot-
tom of the well with an energy E�−4V0 exp�−d2 /R2�. With
decreasing R the energy increases as the well narrows and its
depth diminishes. For R�10 the structure starts to split into
two wells of depth of approximately V0, centered at �d and
separated by a shallow potential barrier. The ground-state
energy is now E�−2V0. The formation of the barrier be-
tween the wells produces a rapid decrease in the Coulomb
interaction down to a negligible value. The height of the
barrier increases with decreasing R while the width of each
well decreases maintaining a depth of V0. This reflects in a
slight increase in E. For R�1 the two wells become so nar-
row that there is a rapid increase in the system kinetic energy
and correspondingly a sharp variation in the ground-state
energy derivative: E now rapidly increases to reach its maxi-
mum value. As R decreases the electronic wave function
starts to spread out of the wells. For R�0.1 this determines
a slight increase in the Coulomb interaction �see inset in Fig.
2�b�	.

For p=7 and R�30 the confinement potential passes
from a single well to a core-shell QD nanostructure with a
thin outer shell and a smooth transition between core and
shell. As R decreases, the external layer becomes thicker and
more sharply defined while the inner-core diameter decreases
in size. The two electrons are localized at the bottom of the
inner well with a corresponding ground-state energy of E
�−4V0. The Coulomb repulsion increases with decreasing
inner-core width. For 9�R�15 the width as well as the
depth of the inner core decreases and correspondingly both E
and �U rapidly increase. At R�10 the electronic wave func-
tion start to spread into the outer shell and for R�9 the
structure turns into a double well with a depth of V0 and an
interwell barrier whose height increases with decreasing R.
As the electrons localize in different wells, the Coulomb in-
teraction suddenly drops to a negligible value. For R�1 the
two separated wells become so narrow that the system ki-
netic energy rapidly increases, similarly to p=2. For R
�0.3 the spreading of the electronic wave function outside
the wells determines a slight increase in the Coulomb inter-
action �see inset in Fig. 2�b�	.

In the case of a rectangularlike confinement potential
�p=200�, the type of nanostructures encountered for different
R are similar to the p=7 case. However the increased steep-
ness of the potential walls and the abrupt transition between
core and outer shell and between the nanostructure and the
surrounding material induce sharper transitions for decreas-
ing R in both the ground-state energy and the Coulomb re-
pulsion. The energy is basically constant for R�10 and 2
�R�8. For R�9 the Coulomb interaction rapidly reaches
its maximum as the inner core becomes very narrow but the
electrons are still localized within it. Then, as the electrons
delocalize into the outer shell, the Coulomb repulsion sud-
denly decreases to a negligible value. It will slightly increase
again for R�0.3 as the electronic wave function signifi-
cantly spreads out of the wells.

We notice that, due to the chosen parameters, the Cou-
lomb repulsion represents at any time a very small fraction
of the total energy. However we will show that it will play a
crucial role for the understanding of the behavior of the
entanglement.

p = 2

p = 7

p = 200

p = 2

p = 7

p = 200

p = 2
p = 7

L

(c)

(b)

(a)
<

U
>

(H
ar

tr
ee

)
E

(H
ar

tr
ee

)

R (a)

p = 2000.2

0.4

−30

0

−10

−40

1

0.8

0.6

0.4

0.2

0

0.6

0
0 10 20 30

3020100

0 10 20 30

−20

0.0012

0.0008

0.0004

0
0.2 0.40

0.5

0.4

0.3
0 0.2 0.4 0.6 0.8

0.6

FIG. 2. Ground-state energy E �upper panel�, Coulomb repul-
sion �U �medium panel�, and linear entropy of the reduced density
matrix L �lower panel� versus confinement potential range R, for
different values of p �as labeled�. The results for �U and L corre-
sponding to small values of R are shown in the insets of the middle
and lower panel, respectively.
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IV. ENTANGLEMENT AND LINEAR ENTROPY

Bipartite entanglement is nowadays well stated for distin-
guishable two-component quantum systems. In particular,
the state representing an entangled system cannot be factor-
ized into a product of independent states describing its parts.

Difficulties appear in classifying and quantifying the en-
tanglement of a system composed by indistinguishable par-
ticles. This is due to the requirement for the antisymmetriza-
tion or symmetrization under particle exchange of the wave
function describing indistinguishable fermions or bosons, re-
spectively. In Refs. 21 and 22 it has been shown that the
unavoidable correlations due to the particle-exchange sym-
metry can be related �for fermions� to the Slater rank of the
state. This corresponds to the minimum number of Slater
determinants in which the state can be expanded. For two
indistinguishable fermions the minimum possible Slater rank
is one and the related entanglement corresponds to the un-
avoidable antisymmetrization of the wave function. This en-
tanglement cannot be used as a resource for quantum-
information processing.

In the system of two indistinguishable fermions we are
considering, the entanglement is distributed over the spin and
spatial degrees of freedom. In this paper we are interested in
the entanglement of the ground state: the related many-body
wave function can be factorized into spin and spatial com-
ponents and the entanglement of the two parts treated sepa-
rately.

In particular, the spin component of the ground state is a
singlet state and thus always maximally entangled: if we
consider then the wave function corresponding to the mini-
mum entanglement content for this system,
��x1���x2���↑1↓2− �↓1↑2�, we see that the �constant� en-
tanglement embedded in the spin degrees of freedom corre-
sponds indeed to that minimum entanglement stemming
from the antisymmetry requirements. Hence, as the spin en-
tanglement is constant, in the following we will focus on the
entanglement generated by the spatial degrees of freedom
only.10

We wish to study how the spatial entanglement changes as
the geometry of the confinement potential is modified. We
will quantify the spatial entanglement by using the linear
entropy L of the one-particle reduced density matrix, which
is a useful entanglement measure for a two-fermion system
with a very large number of degrees of freedom:10,23 L has
been shown to have a behavior very similar to the Von Neu-
mann entropy24 when quantifying the particle-particle
entanglement;10,23 at the same time L is much easier to cal-
culate, especially for a system with a very large number of
degrees of freedom.

The linear entropy of the reduced density matrix is given
by

L = Tr�red − red
2 � = 1 − Tr red

2 .

In the continuous case the reduced density matrix is given by

red�x1,x2� =� ���x1,x3���x2,x3�dx3

with

red
2 �x1,x2� =� red�x1,x3�red�x3,x2�dx3

and

Tr red
2 =� red

2 �x,x�dx .

The linear entropy measures the entanglement in a pure state
by giving an indication of the number and spread of terms in
the Schmidt decomposition of the state.

The numerical results for the entanglement in respect to R
are displayed in Fig. 2�c�. L presents some general charac-
teristics: a flat region with L=0.5 for small values of R,
followed by a sharp drop to its minimum value at interme-
diate R, and by a partial recovery of the entanglement as R
increases further.

Let us consider in more detail the case of a soft confine-
ment potential �p=2�. For R�18 the entanglement is lower
while the Coulomb interaction is higher than for p=7 and
p=200. This is due to the shape of the p=2 potential �Fig.
1�c�	 which is narrower toward the bottom of the well, where
the electrons are confined. For the range 10�R�12 as the
single QD splits into two separate potential wells the en-
tanglement increases to its highest value and the Coulomb
interaction quickly diminishes. For smaller R the overall
structure corresponds to two separated QDs and the entangle-
ment does not change. The Coulomb interaction is negligible
in this range. For R�0.1 as the Coulomb interaction slightly
increases, the entanglement decreases up to L�0.3.

For p=7 and large R both entanglement and Coulomb
interaction are intermediate between the cases of p=2 and
p=200, L decreasing and �U increasing with decreasing R.
At R�17.5 the curves describing �U for p=2 and p=7
cross and so do the curves describing the entanglement: from
Figs. 2�b� and 2�c� we note that all the crossings between the
curves describing the Coulomb repulsion correspond to
crossings between the entanglement entropy curves, showing
the strong correlation between the behavior of the spatial
entanglement and the Coulomb interaction. For smaller R, as
long as the interparticle interaction increases, the entangle-
ment decreases and drops to its minimum value, correspond-
ing to the maximum of �U. For 8�R�9, as the Coulomb
repulsion drops to a negligible value, the entanglement
springs to its maximum value L=0.5, the same for all values
of p.25 L remains constant for 0.3�R�8 but for R�0.3,
each of the separated wells becomes so narrow that the elec-
tronic wave function spreads out of the wells so that the
entanglement decreases again toward a value of L=0.3. An
increase in the Coulomb interaction up to �U=12
�10−4 hartree accompanies this last variation in the
entanglement.

For p=200 the entanglement behavior is similar to the
previous case. However the rectangularlike confinement po-
tential allows for a larger modulation of the electronic wave
function at large values of R, so in this region the entangle-
ment is higher �and the Coulomb repulsion lower� than for
p=2 and p=7. For R�8 the inner well becomes so narrow
and the electrons are so confined that the entanglement drops
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to approximately zero. The minimum of the entanglement
corresponds to the maximum Coulomb repulsion. As the
Coulomb repulsion drops to zero, the entanglement increases
sharply to its highest value while the QD nanostructure �and
the electronic wave function� splits into separate wells. For
R�0.3 the entanglement decreases again similarly to the
case of p=7. Notice that the entanglement reaches a very
similar value for R�0 and R�30.

V. MANY-BODY WAVE FUNCTION

In order to explain the behavior of the entanglement for
the different strengths of the confinement potential and val-
ues of the confinement potential range R, we will discuss the
properties of the system many-body wave function. Let us
consider first p=200 and the two extreme cases of maximum
�L=0.5� and minimum �L�0� entanglement. The wave
function corresponding to L�0 �R=8.35� is shown in Fig. 3,
upper panel. Here the electrons are confined within the very
narrow core �see the upper panel inset, which shows the
shape of the potential�. Due to this very strong-confinement
regime, even though the Coulomb repulsion is maximum, the
spatial part of the wave function approaches the “noninter-
acting” uncorrelated limit � f�x1 ,x2�=��x1���x2�, a product
state which corresponds to no spatial entanglement. This is
clearly shown by the comparison between the upper panel
and the lower panel, which shows the Gaussian factorized
state � f ,G�x1 ,x2�=exp�−2x1

2�exp�−2x2
2�.

At the opposite side of the entanglement spectrum, we
find the system characterized by R=3.6 which corresponds to
the maximum entanglement value L=0.5. In this case the
nanostructure is composed by two relatively narrow and
well-separate wells: each well would strongly confine the
particles but having more than one well provides an addi-
tional degree of freedom to the system. In this case even the
weakest Coulomb interaction will then be able to spatially
correlate the particles in a state with the structure
�t�x1 ,x2�=��x1−d���x2+d�+��x1+d���x2−d�. This is
the spatial equivalent of a spin triplet and as such
contains the same entanglement �L=0.5�. Figure 4 shows the
actual many-body wave function for R=3.6 �upper panel�
and for comparison, the Gaussian “triplet-type”
state �t,G�x1 ,x2�=exp�−�x1−8�2 /2	exp�−�x2+8�2 /2	+exp
��−�x2−8�2 /2	exp�−�x1+8�2 /2	 �lower panel�.

The other values of the entanglement correspond to wave
functions intermediate between the two described. In Fig. 5
we present the wave functions for p=200 and six values or
R. Each wave function is a three-dimensional plot in the
coordinates �x1 ,x2 ,y=��x1 ,x2�	. We plot the projection of
the wave functions on the plane �x1 ,y�. The wave function is
drawn against the confining potential shape �dotted line� and
for each panel, the full confinement potential is presented in
an inset.

The values of R have been taken as follows: R=0.3 �Fig.
5�a�	 corresponds to the range where the two separated wells
are extremely narrow. As a consequence the electronic wave
function spills outside and spreads over a range much larger
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than the well boundaries. For this value of R and within the
numerical limits of our calculation, electrons are close to
ionization �E�0 hartree�. The spreading of the wave func-
tion affects the entanglement properties of the system: the
electrons are less localized so that their spatial entanglement
decreases while their Coulomb interaction increases. R=3.6
�Fig. 5�b�	 has been discussed before: the whole wave func-
tion is localized close to the bottom of the two wells in a
triplet-type state. Spatial entanglement is now maximum as
the measure of one particle in a well would imply certain
knowledge that the other particle is in the other well. The
description is similar for R=7.8 �Fig. 5�c�	, which corre-
sponds to a state close to the edge of the region with constant
L=0.5. Though the wave-function shape is quite different
from the case R=3.6, its overall structure remains the same
and so does its entanglement. In this respect it is interesting
to notice that a wide variety of nanostructures �see, e.g., Fig.
1�a�	 or insets in Figs. 5�b� and 5�c� would give rise to the
same maximum entanglement. Surprisingly in this case the
entanglement loses its strong sensitivity to the wave-function
details �see, e.g., discussion in Ref. 10� and the local shape
of the potential does not affect the entanglement: Fig. 2�c�
shows that the same value of L is obtained for 0.5�R�8
and 2� p�200. Maximum entanglement seems indeed to be
a very robust feature and to depend only on the topological
feature of the wave function to be separable into two not-
interconnected regions of space.

R=8.35 corresponds, as mentioned, to the minimum value
L=0.3�10−2: both electrons are strongly localized in the
�same� core well and the spatial part of the wave function
becomes close to a factorized form. We notice that the mini-
mum of L is very sharp �see Fig. 2�c�	: in contrast to maxi-
mum entanglement, its minimum value can be achieved for
very specific parameters and local confining potential shape
only. As soon as the particles are less strongly confined, the
system responds to Coulomb repulsion by increasing spatial
correlation, which increases this type of entanglement. This

explains why the minimum value of L for the softer poten-
tials characterized by p=2 and p=7 is actually higher than
for p=200.

As R increases and the core well widens, the Coulomb
repulsion forces the electrons apart and correlates their posi-
tion further: this is evident when comparing Fig. 5�d� with
Figs. 5�e� and 5�f�. Due to the enhanced correlation the en-
tanglement increases. We notice that, though the confining
potential is very different, the wave function �and its en-
tanglement content� is very similar for R=0.3 and R=30.
Again this shows that a similar entanglement within two
electrons can be engineered by using very different types of
nanostructures.

The behavior of the wave functions for the softer poten-
tials determined by p=2 and p=7 is similar. For p=7 the
lesser strength of the wave-function confinement translates
into a less pronounced minimum in the entanglement; for p
=2 the transition between single and double wells is even
smoother, and the ground-state wave function does not
change significantly for 15�R�30 �not shown�.

We underline that both maximum and minimum entangle-
ment correspond to a system which is strongly localized and
strongly confined. The main difference between the two ex-
tremes is that to achieve the maximum entanglement some
degrees of freedom which allow for correlation are necessary
�more than one well in this case�.

VI. ENTANGLEMENT INDICATORS

A. Probability density at the origin

We will now show that the entanglement behavior can be
inferred by considering the wave-function behavior along
two specific directions, x1=x2 and x1=−x2. ���x1 ,x2=x1��2
represents the probability density of finding both electrons at
the same point while ���x1 ,x2=−x1��2 represents the prob-
ability density of finding the electrons at two different points
which are symmetric in respect to the y axis. In Fig. 6 we
plot ���x1 ,x2=x1��2 �dotted line� and ���x1 ,x2=−x1��2 �solid
line� for p=200 and the same sequence of R values as in Fig.
5

Low spatial entanglement implies that there is a high
probability of finding both particles at the same position x:
this would in fact imply that Coulomb repulsion is unable to
induce spatial correlation and the system is close to a factor-
ized state. Vice versa we expect ���x1 ,x2=x1��2=0 �and, in
particular, ���0,0��2=0	 for a maximally entangled state, as
confirmed by Figs. 6�b� and 6�c�.

High spatial entanglement will imply that finding one par-
ticle at x will inform us that the other particle has a high
probability to be at a different, but specific, location, i.e., by
the symmetry of our confinement potential, at −x. We expect
then ���x1 ,x2=−x1��2 to present peaks symmetric in respect
to x1=0 when the spatial entanglement is nonzero, as shown
in Fig. 6.

For R corresponding to minimum entanglement,
���x1 ,x2=−x1��2����x1 ,x2=x1��2 and ���0,0��2 reaches its
maximum �Fig. 6�d�	. The lack of differentiation between
these two “orthogonal” type of correlations �having the same
probability of finding a particle at the same position or in a
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position symmetric in respect to the origin� indicates in fact
that little information on the other particle can be gained by
measuring the position of one of the particles. By looking at
Fig. 6�d� we notice once more that for minimum entangle-
ment the wave function assumes a form close to the factor-
ized form ��x1 ,x2=x1����x1���x2�.

In general the value of the probability density ���x1 ,x2��2
at the highly symmetric point x1=x2=0 �common to both the
directions considered� will increase for decreasing entangle-
ment: let us consider the values of L and ���0,0��2 for R
=15 and the different values of p. From Fig. 2�c� we see that
L�p=7, R=15��L�p=2, R=15��L�p=200, R=15�. By
comparing Figs. 6�e�, 7�a�, and 7�c� we find that instead
���0,0 ; p=7, R=15��2� ���0,0 ; p=2, R=15��2� ���0,0 ;
p=200, R=15��2. If we now consider R=30, the p=2 and
p=7 curves for the entanglement have crossed and indeed
we find that L�p=2, R=30��L�p=7, R=30��L�p
=200, R=30� and from Figs. 6�f�, 7�b�, and 7�d�,
���0,0 ; p=2, R=30��2� ���0,0 ; p=7, R=30��2� ���0,0 ;
p=200, R=30��2. These findings confirm that the value of
the probability density at a single but highly symmetric point

contains very relevant information on the value of the overall
system entanglement. False indication of entanglement might
occur when considering mixed states but similar problems
would be encountered when using pure-state entanglement
measures such as L or the Von Neumann entropy and even
criteria designed for mixed states will not always detect bi-
partite entanglement between systems with large numbers of
degrees of freedom.26

B. Coulomb interaction and effects of long-range repulsion

So far we have modeled the Coulomb repulsion as a con-
tact interaction. This implies that the Coulomb repulsion is
nonzero only if the wave function allows for both particles to
be at the same place. The higher the probability of having
particles at the same position, the higher the Coulomb repul-
sion and the lower the entanglement. This counterintuitive
“inverse” relationship between Coulomb repulsion and en-
tanglement behaves as a very good entanglement indicator,
as can be observed by comparing Figs. 2�b� and 2�c�, where
the maxima �minima� of the Coulomb interaction corre-
sponds to the minima �maxima� of the entanglement. We
may wonder though if this is an artifact of the contact type of
interaction used.

In Fig. 8 we present the calculations done using the long-
range Coulomb repulsion

Ulr�x1,x2� =
1

�1 + �x1 − x2�2
�5�

and a basis size N=30, which allows for convergency for the
range of values of R shown. We choose p=2 which, describ-
ing the softest potential among the set of p-values chosen,
would allow for the biggest modification of the correspond-
ing many-body wave functions and hence of the entangle-
ment.

Figure 8 shows first of all that the main characteristics of
the entanglement found with the contact interaction are con-
firmed: the entanglement entropy presents a plateau with L
=0.5 for R�10, a rapid decrease for intermediate values of
R reaching a minimum for R�17 and a slow increase in the
entanglement as R is increased further. The higher value of
the minimum, in respect to the results obtained using the
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contact type of interaction, witnesses the increase in spatial
correlations due to the long-range nature of Eq. �5�.

Most importantly though, the results obtained using a
long-range interaction still show the same inverse correlation
between Coulomb repulsion and entanglement: this indicates
that Coulomb repulsion between particles is a good indicator
for spatial entanglement.

VII. POTENTIAL QUANTUM PHASE TRANSITION

A point of nonanalyticity in the ground-state energy of a
quantum system is associated with a quantum phase
transition.27 In Ref. 28 it was shown that in such a transition
a nonanalyticity of the entanglement measure would be as-
sociated to the nonanalyticity of the ground-state energy.

In the system we are considering, for increasing p, as the
confining potential becomes harder and harder, a discontinu-
ity in the derivative in respect to the potential range of the
ground-state energy and of the entanglement measure, �E /�R
and �L /�R, seems to appear. This discontinuity underlines
the transition between minimum and maximum values of the
entanglement �see R�8 for p=200�.

A similar pattern for the entanglement was observed in
the quantum phase transition for two electrons close to the
ionization point of a single QD.9 In that case the transition
was between bound and unbound �resonance� states while in
our case a transition seems to occur between two different
sets of bound states.

In the system we are considering, the transition is trig-
gered by a shape change in the confining potential, from the
potential in the inset of Fig. 5�d� to the one in the inset of
Fig. 5�c�. Due to this change, the system shifts between two
very different sets of ground states: the first set describes the
particles being highly confined in the narrow core region of a
core-shell-type structure and it is formed by wave functions
similar to the factorized � f�x1 ,x2�; the second set describes
particles confined within two separate wells and it is formed
by the topologically different triplet-type states �t�x1 ,x2�.
The fact that the system ground state on the left and right of
the transition has well defined but very different properties is
consistent with a quantum phase-transition picture �see, e.g.,
Ref. 29�.

We note that as R decreases and the transition is ap-
proached, the energy difference between the system ground
state, as bounded within the inner well, and the ground state
that the system would have if the inner well would be absent
�and which would correspond to a double well with a barrier
of vanishing width30� decreases as well. This energy distance
between the two relevant sets of bound states reaches a mini-
mum at the transition point.

The transition between these two confinement potential
shapes could be induced experimentally by changing the po-
larity of a gate positioned over the core-to-barrier region
within a gate-defined QD. Recent studies have shown the
possibility of engineering gate-defined QD confinement po-
tentials with shapes ranging from Gaussian to rectangular-
type potentials,31 so this type of device should allow the
transition between minimum and maximum entanglement to
be explored even in �or at least close to� the large p limit.

VIII. CONCLUSIONS

We have studied the entanglement of two interacting elec-
trons confined within single, core shell, and double quantum
dots. The confinement potential has been parametrized by a
two-center power-exponential potential, which has allowed
us to investigate quantum dots described by either hard or
soft potentials, with different ranges, including the effects of
the transition between the different types of structures. The
calculation has been done by direct diagonalization of the
Hamiltonian including the Coulomb interaction between the
electrons. By varying the confinement potential as a function
of dot shape, range of confinement potential—which deter-
mines the QD size—and the strength of the confining poten-
tial we showed that it is possible to induce fast and large
variations in the entanglement between the two electrons.
This property may be used to design nanostructures—and
nanostructure modulations via external fields—according to
the level of entanglement required by a specific application.

We have studied in detail the relationship between Cou-
lomb repulsion and spatial entanglement and shown that they
display a counterintuitive inverse correlation: due to Cou-
lomb repulsion, electrons tend to correlate their position to
minimize their interaction, which implies minimizing the
probability that electrons could be found at the same posi-
tion. From the entanglement point of view this correlation
means enhancing the probability that if one electron is mea-
sured at a certain position the other will be in a different but
correlated region, thus enhancing the spatial entanglement
between the two particles. We note however that if the Cou-
lomb interaction is switched off, the spatial entanglement
vanishes �see also Ref. 32�. This is in contrast to the behavior
of the “local” �or “site”� entanglement which characterizes
the Hubbard model, where zero Coulomb interaction corre-
sponds to maximum entanglement.29,33

We have analyzed the many-body wave function and, in
particular, the correlations between the particle probability
density along some specific directions and the entanglement.
We have then proposed the value of the particle probability
density at a single �but highly symmetric point� as an indi-
cator of entanglement.

We have identified a potential quantum phase transition
between minimally and maximally entangled states within
our system. This transition is triggered by a change in the
potential shape which induces a topological change in the
many-body wave function, from an almost factorized to a
triplet-type wave-function form. Further investigation of this
intriguing phenomena will be pursued in future work.

Systems of electrons confined in quantum dots have been
proposed as tools for performing quantum-information/
computation tasks; it is then of great importance to under-
stand how the entanglement between these particles can be
engineered and tailored. Our work provide a systematic
study in this direction.
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